Teoreticar Galileo Galilej Tuzla
Član broj: 129740 Poruke: 161 37.203.105.*
|
Moze li pomoc oko ovog zadatka:
Izracunati mjeru skupa svih realnih brojave iz segmenta [0,1] koji u svom decmalnom zapisu ne sadrze cifru 5.
Hvala unaprijed :)
|
|
| |
|
miki069
Član broj: 161528 Poruke: 2056 *.adsl.eunet.rs.
|
Izbacis sve brojeve koji imaju 5 kao prvu decimalu, to jest interval [0.5 do 0.6). Mera izbačenog skupa je 1/10.
Posle toga izbacis sve brojeve koji imaju 5 kao drugu decimalu, ne računajući takve iz već izbačenog intervala [0.5 do 0.6), to jest skup
[0.05 do 0.06) U [0.15 do 0.16) U [0.25 do 0.26) U [0.35 do 0.36) [0.45 do 0.46) U [0.65 do 0.66) U [0.75 do 0.76) [0.85 do 0.86) U [0.95 do 0.96).
Mera izbačenog skupa je 9/100.
Posle toga Posle toga izbacis sve brojeve koji imaju 5 kao treću decimalu, to jest skup...
Mera izbačenog skupa je 81/1000 (bilo ko od 9 preostalih cifara na prva dva mesta).
Posle toga Posle toga izbacis sve brojeve koji imaju 5 kao četvrtu, to jest skup...
Mera izbačenog skupa je 729/1000 (bilo ko od 9 preostalih cifara na prva tri mesta). 9*9*9=729
I tako dalje do beskonačnosti.
Mera izbačenih intervala je:
1/10 + 9/100 + 81/1000 + 729/10000 + ...= (suma beskonačnog geometrijskog reda kome je q=9/10) = ... = 1
Što znači da je mera datog skupa jednaka 1-1 = 0.
Primer neprebrojivog skupa čija je mera 0.
[Ovu poruku je menjao miki069 dana 18.11.2016. u 11:35 GMT+1]
|
|
| |
|
miki069
Član broj: 161528 Poruke: 2056 *.adsl.eunet.rs.
|
Da ne otvaram novu temu.
"Skup Q je svuda gust u skupu R".
Isto je ekvivalentno sa "u svakoj okolini svakog x iz R može se naći y iz Q".
Ako je x iz Q dokaz mi je jasan.
Ako je x iz R\Q?
Dokaz nemam.
Može neko uputsvo.
[Ovu poruku je menjao miki069 dana 23.11.2016. u 14:38 GMT+1]
|
|
| |
|
Teoreticar Galileo Galilej Tuzla
Član broj: 129740 Poruke: 161 *.PPPoE-2858.sa.bih.net.ba.
|
Hvala Miki puno...
|
|
| |
|
Teoreticar Galileo Galilej Tuzla
Član broj: 129740 Poruke: 161 *.PPPoE-2858.sa.bih.net.ba.
|
Imam još dva- tri pitanja, ako neko ima neko uputstvo...
- Ako je f mjerljiva funkcija, onda to povlaci da je e na f mjerljiva funkcija (ispitati tacnost implikacije!...pokusavao sa kontraprimjerom)
- Ako je f na 4 mjerljiva funkcija, onda je i f mjerljiva funkcija (ispitati tacnost implikacije!)
- Da li skup: E = U En (n = 1, beskonacno), gdje En čini opadajući niz mjreljivih skupova, beskonacne mjere m En = beskonacno, može imati beskonačnu, konačnu i mjeru nula.
Nadjem primjer za konacnu mjeru kao En = [-1,1]\[-1/n, 1/n], pa pokazem da je m E = 2
- Kako da nađem mjeru skupa m ( I presjek [0, 1/2) ) = ?
Ako ima neko uputstvo bio bi zahvalan.... :)
Ps: izvinjavam se za ovako pisanje, imam tehnicki problem
|
|
| |
|